Revert r3492

git-svn-id: svn+ssh://svn.tuxfamily.org/svnroot/qet/qet/trunk@3493 bfdf4180-ca20-0410-9c96-a3a8aa849046
This commit is contained in:
scorpio810
2014-11-16 20:32:55 +00:00
parent 02df8a5073
commit d544fd3d85
19 changed files with 11 additions and 1744 deletions

View File

@@ -27,31 +27,12 @@
#include "terminal.h"
#include "conductorautonumerotation.h"
#include "conductorpropertiesdialog.h"
#include "../qetapp.h"
#include "binarygrid.h"
#define PR(x) qDebug() << #x " = " << x;extend
#define PR(x) qDebug() << #x " = " << x;
bool Conductor::pen_and_brush_initialized = false;
QPen Conductor::conductor_pen = QPen();
QBrush Conductor::conductor_brush = QBrush();
QBrush Conductor::square_brush = QBrush(Qt::darkGreen);
int vec2d::count = 0;
bool Conductor::bAffPoint = true;
bool Conductor::bSmooth = false;
Conductor* Conductor::lastConductor = NULL;
QPointF Conductor::P1;
Qet::Orientation Conductor::O1;
QPointF Conductor::P2;
Qet::Orientation Conductor::O2;
bool Conductor::bDebug = false;
bool Conductor::bDebugGrid = false;
int Conductor::iIndiceDebug = 0;
/**
Constructeur
@param p1 Premiere Borne a laquelle le conducteur est lie
@@ -118,7 +99,6 @@ Conductor::Conductor(Terminal *p1, Terminal* p2, Diagram *parent_diagram) :
this,
SLOT(displayedTextChanged())
);
bMouseOver = false;
}
/**
@@ -191,11 +171,6 @@ void Conductor::updateConductorPath(const QPointF &p1, Qet::Orientation o1, cons
Q_UNUSED(o1);
Q_UNUSED(o2);
if ( QETApp::bConductor2 ) {
//qDebug() << "updateConductorPath2";
generateConductorPath2(p1, o1, p2, o2 );
return;
}
ConductorProfile &conductor_profile = conductor_profiles[currentPathType()];
Q_ASSERT_X(conductor_profile.segmentsCount(QET::Both) > 1, "Conductor::priv_modifieConductor", "pas de points a modifier");
@@ -321,11 +296,6 @@ QHash<ConductorSegmentProfile *, qreal> Conductor::shareOffsetBetweenSegments(
@param o2 Orientation de la borne 2
*/
void Conductor::generateConductorPath(const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
if ( QETApp::bConductor2 ){
//qDebug() << "generateConductorPath2";
generateConductorPath2(p1, o1, p2, o2 );
return;
}
QPointF sp1, sp2, depart, newp1, newp2, arrivee, depart0, arrivee0;
Qet::Orientation ori_depart, ori_arrivee;
@@ -421,477 +391,6 @@ void Conductor::generateConductorPath(const QPointF &p1, Qet::Orientation o1, co
segmentsToPath();
}
void Conductor::addPoint( vec2d p ) {
vec2d vScenePos = vec2d(scenePos());
p -= vScenePos;
qDebug() << "Test Point : "<< currentIndice;
if ( currentIndice > 1 ){
vec2d ori = vec2d( vec2ds[currentIndice-1] );
if ( diagram() ) {
if ( diagram() -> _binaryGrid ->test( ori, p ) )
qDebug()<< "Test droie OK de "<< currentIndice-1 <<" à "<< currentIndice;
else
qDebug()<< "Test droie NOK de "<< currentIndice-1 <<" à "<< currentIndice;
}
}
if ( bDebug ) {
qDebug() << "--------------------------";
qDebug() << " point no : " << currentIndice;
printVec2d( " Ajout de : ", p );
qDebug() << "--------------------------";
}
vec2ds << p;
currentIndice++;
if ( currentIndice == iIndiceDebug ) bDebug = true;
else bDebug = false;
}
void Conductor::printVec2d( QString str, vec2d v ) {
qDebug() << str <<" ("<< v.x <<","<< v.y <<")";
}
void Conductor::printDoubl( QString str, double d ) {
qDebug() << str <<" "<< d;
}
/*
*
*/
vec2d Conductor::orientation2vec2d( Qet::Orientation orientation ) {
switch(orientation) {
case Qet::North: return vec2d( 0.0,-1.0 );
case Qet::East: return vec2d( 1.0, 0.0 );
case Qet::South: return vec2d( 0.0, 1.0 );
case Qet::West: return vec2d(-1.0, 0.0 );
}
return vec2d(0.0,0.0);
}
void Conductor::rect2corner( vec2d* topLeft, vec2d* topRight, vec2d*bottomLeft, vec2d* bottomRight, QRectF qRectF, QPointF pos ) {
*topLeft = vec2d( pos + qRectF.topLeft() ) + vec2d(1.0,1.0);
*topRight = vec2d( pos + qRectF.topRight() ) + vec2d(-1.0,1.0);
*bottomLeft = vec2d( pos + qRectF.bottomLeft() ) + vec2d(1.0,-1.0);
*bottomRight = vec2d( pos + qRectF.bottomRight() ) + vec2d(-1.0,-1.0);
}
void Conductor::rect2side( vec2d* topLeft, vec2d* bottomRight, QRectF qRectF, QPointF pos ) {
*topLeft = vec2d( pos + qRectF.topLeft() );
*bottomRight = vec2d( pos + qRectF.bottomRight() );
}
void Conductor::rect2side( vec2d* topLeft, vec2d* bottomRight, QRectF qRectF ) {
*topLeft = vec2d( qRectF.topLeft() );
*bottomRight = vec2d( qRectF.bottomRight() );
}
int Conductor::sign( double d ) { return d==0.0 ? 0 : d<-EPSILON ? -1: 1;}
int Conductor::computeSign( vec2d p1, vec2d p2, vec2d vDir ) {
vec2d c_p1 = vec2d( p1 ).mulCoord( vDir );
vec2d c_p2 = vec2d( p2 ).mulCoord( vDir );
// qDebug() << " computeSign()";
// printVec2d( " p1 : ", c_p1 );
// printVec2d( " p2 : ", c_p2 );
int ret = sign( vec2d( c_p1, c_p2 ).addCoord() );
// printDoubl( " Sign : ", ret );
return ret;
}
bool Conductor::isInsideRect( vec2d pt, vec2d topLeft, vec2d bottomRight ) {
int s_ol = computeSign( pt, topLeft , east );
int s_or = computeSign( pt, bottomRight , east );
if ( s_ol == s_or ) return false;
s_ol = computeSign( pt, topLeft , south );
s_or = computeSign( pt, bottomRight , south );
if ( s_ol == s_or ) return false;
return true;
}
bool Conductor::isInsideRect( vec2d orig, vec2d dest, vec2d topLeft, vec2d bottomRight ) {
int s_ol = computeSign( orig, topLeft , east );
int s_or = computeSign( orig, bottomRight , east );
int s_dl = computeSign( dest, topLeft , east );
int s_dr = computeSign( dest, bottomRight , east );
if ( s_ol == s_or && s_ol == s_dl && s_ol == s_dr ) {
return false;
}
s_ol = computeSign( orig, topLeft , south );
s_or = computeSign( orig, bottomRight , south );
s_dl = computeSign( dest, topLeft , south );
s_dr = computeSign( dest, bottomRight , south );
if ( s_ol == s_or && s_ol == s_dl && s_ol == s_dr ) {
return false;
}
return true;
}
void Conductor::computeIntersection( vec2d orig, vec2d& dest, vec2d topLeft, vec2d bottomRight ) {
vec2d orientation;
vec2d vDir = vec2d( orig, dest ).vnormalize();
double sign = vDir.addCoord();
if ( vDir.dot(south) == 0.0 ) orientation = east;
else orientation = south;
if ( bDebug ) {
printVec2d( " orig : ", orig );
printVec2d( " dest : ", orig );
printVec2d( " dir : ", orientation);
}
vec2d vOL = vec2d( orig, topLeft ).mul(orientation);
vec2d vOR = vec2d( orig, bottomRight).mul(orientation);
double dOL = vOL.addCoord() * sign;
double dOR = vOR.addCoord() * sign;
if ( bDebug ) {
printDoubl( " dOL : ", dOL );
printDoubl( " dOR : ", dOR );
}
double res;
if ( dOL < dOR ) {
res = dOL;
res -= 10.0;
}
else {
res = dOR;
res += 10.0;
}
dest = orig + res * vDir;
snapOnGrid(dest);
if ( bDebug ) {
printVec2d( " dest : ", dest);
}
}
bool Conductor::isInsideElement( vec2d pt, Element* element) {
vec2d topLeft, bottomRight;
rect2side( &topLeft, &bottomRight, element -> boundingRectTrue() );
return isInsideRect( pt, topLeft, bottomRight );
}
Element* Conductor::intersectionElement( vec2d &pt, vec2d ori, Element* element ) {
if ( element == NULL ) return NULL;
vec2d topLeft, bottomRight;
rect2side( &topLeft, &bottomRight, element -> boundingRectTrue() );
if ( bDebug ) {
qDebug() << " test intersection avec : "<< element -> name();
printVec2d( " topLeft : ", topLeft );
printVec2d( " bottomRgiht : ", bottomRight );
}
if ( isInsideRect( ori, pt, topLeft, bottomRight ) ) {
if ( bDebug ) {
qDebug() <<" *** Intersection ";
qDebug() <<" *** computeInstersection";
}
computeIntersection( ori, pt, topLeft, bottomRight );
return element;
}
else {
if ( bDebug ) {
qDebug() <<" Pas d'intersection ";
//intersection( pt, ori, topLeft, bottomRight );
}
}
return NULL;
}
Element* Conductor::intersectionElements( vec2d &pt, vec2d ori ) {
Element* returnElement = NULL;
if ( bDebug ) {
qDebug() << "Intersection Elements";
}
if ( diagram() ){
QList<Element *> elements = diagram() -> elements();
for ( int i=0; i<elements.size(); i++ ) {
Element* element = elements[i];
//if ( element -> terminals() != null ) continue;
if ( element -> terminals().size() == 0 ) continue;
Element* ret = intersectionElement( pt, ori, element );
if ( ret ) returnElement = ret;
}
}
return returnElement;
}
void Conductor::intersectionConductors( vec2d &pt, vec2d ori ) {
if ( bDebug ) {
qDebug() << "Intersection Conductor";
}
if ( diagram() ){
QList<Element *> elements = diagram() -> elements();
int nbElem = elements.size();
for ( int i=0; i<nbElem; i++ ) {
Element* element = elements[i];
QList<Terminal *> terminals = element -> terminals();
int nbTerm = terminals.size();
for( int j=0; j<nbTerm; j++ ) {
Terminal * terminal = terminals[j];
QList<Conductor *> conductors = terminal -> conductors();
int nbCond = conductors.size();
for( int k=0; k<nbCond; k++ ) {
Conductor* conductor = conductors[k];
QList<vec2d> vec2ds = conductor -> vec2ds;
int nbVec2d= vec2ds.size() - 1 ;
vec2d vDir = vec2d(ori, pt).vnormalize();
//return;
for( int l=0; l<nbVec2d; l++ ) {
vec2d topLeft = vec2ds[l];
vec2d bottomRight = vec2ds[l+1];
vec2d vDirConductor = vec2d(topLeft, bottomRight).vnormalize();
if ( vDirConductor.dot(east) < 0.0 || vDirConductor.dot(south) <0.0 ) {
bottomRight = vec2ds[l];
topLeft = vec2ds[l+1];
}
topLeft -= vec2d( 2.0, 2.0 );
bottomRight += vec2d( 2.0, 2.0 );
/*
vec2d oldPt = vec2d(pt);
while( ori != pt ) {
isInsideRect(ori, pt, topLeft, bottomRight);
//pt = ori + 10.0 * vDir;
pt -= 10.0 * vDir;
qDebug() <<" pt dans conducteur Changement... idx : "<< currentIndice << " "<< pt.addCoord();
}
*/
}
}
}
}
}
bDebug = false;
}
void Conductor::evaluatePath( vec2d ori, vec2d& pt, Element * element, double test ) {
if ( element == NULL ) return;
vec2d vDir = vec2d(ori, pt).vnormalize();
vec2d vOrtho = vec2d(vDir).exch();
if ( vDir == vec2d(0.0,0.0) ) return;
if ( bDebug ) {
qDebug() << "EvaluatePath : "<< test <<" sign "<< sign(vDir.addCoord());
}
if ( fabs(test) > 400.0 ) return;
vOrtho = vOrtho.vabs();
vec2d o = pt + test * vOrtho;
vec2d p = o + 50.0 * vDir;
if ( bDebug ) {
printDoubl( " evaluate t : ", test );
printVec2d( " evaluate p : ", p );
printVec2d( " evaluate o : ", o );
}
intersectionElement( p, o, element );
if ( bDebug ) {
printVec2d( " evaluate p : ", p );
printVec2d( " evaluate o : ", o );
}
test += sign(test) * 10.0;
if ( p == o )
evaluatePath( ori, pt, element, test );
else
pt = o;
}
double Conductor::computeSensEvaluatePath( vec2d ori, vec2d pt, vec2d dest ) {
vec2d vDir = vec2d( ori, dest );
vec2d vNew = vec2d( ori, pt ).exch().vabs();
vDir = vDir.mul(vNew);
double ret = vDir.addCoord();
ret = ret >= 0.0 ? 1.0 : -1.0;
return ret;
}
vec2d Conductor::previousDir() {
if ( currentIndice > 2 ) {
vec2d p2 = vec2ds[currentIndice - 1];
vec2d p1 = vec2ds[currentIndice - 2];
vec2d vDir = vec2d( p1, p2 ).vnormalize();
return vDir;
}
return vec2d(0.0,0.0);
}
vec2d Conductor::findNextPoint( vec2d p1, vec2d& vD1, vec2d p2, vec2d vD2 ) {
vec2d vP1P2n = vec2d(p1, p2).vnormalize();
double dot = vD1.dot(vD2);
double coef = 1.0;
vec2d v = vec2d( p1, p2 );
vec2d vnorm = v.vnormalize();
// if direction are opposite the next point is in the middle
// and not in the same line
if ( dot < -0.9 && vnorm.dot(vD1) != 1.0) { coef = 0.5; }
// tout droit
if ( vP1P2n == vD1 ) {
/*
vec2d newPoint = vec2d( p2 );
Element* element = intersectionElements( newPoint, p1 );
if ( element == NULL ) {
addPoint( p2 );
return p2;
}
*/
coef = 1.0;
}
// New point follow first direction horizontal or vertical
v.x *= coef * fabs(vD1.x);
v.y *= coef * fabs(vD1.y);
vec2d newPoint = p1 + v;
// snap on grid
snapOnGrid( newPoint );
vec2d svgPt = newPoint;
//intersectionConductors( newPoint, p1 );
Element* element = intersectionElements( newPoint, p1 );
if ( newPoint != svgPt ) {
//vec2d newDir;
vec2d svgEvalPt = newPoint;
// compute sens
double first = computeSensEvaluatePath( p1, newPoint, p2) * 10.0;
evaluatePath( p1, newPoint, element, first );
if ( svgEvalPt != newPoint ) {
addPoint( svgEvalPt );
// on conserve la direction
return newPoint;
}
}
else {
if ( vP1P2n == vD1 && newPoint == p2 )
return p2;
}
// compute new direction
vec2d newD1 = vec2d( newPoint, p2 );
newD1.mul(vD1.exch().vabs());
newD1.normalize();
if ( newD1 == vec2d(0.0,0.0) ) {
newD1 = vD1.exch();
addPoint( newPoint );
newPoint += 60.0 * newD1;
newD1 = vD1;
}
// normalize vector 1 unit lenght
newD1.normalize();
//Change vD1 (it's a reference) isn't it
vD1.x = newD1.x;
vD1.y = newD1.y;
// printVec2d(" New dir : ", vD1);
// printVec2d("New point : ", newPoint);
// printVec2d("New point : ", newPoint);
return newPoint;
}
/**
Prolonge une borne.
@param terminal Le point correspondant a la borne
@@ -914,336 +413,10 @@ QPointF Conductor::extendTerminal(const QPointF &terminal, Qet::Orientation term
case Qet::West:
extended_terminal = QPointF(terminal.x() - ext_size, terminal.y());
break;
default: extended_terminal = terminal; break;
default: extended_terminal = terminal;
}
return(extended_terminal);
}
vec2d Conductor::extendOutOfElement( vec2d pt, vec2d vDir, Element* element) {
vec2d newPt = pt;
if ( element ) {
while( isInsideElement( newPt , element )) {
newPt += 10.0 * vDir;
}
}
return newPt;
}
void Conductor::snapOnGrid( vec2d& pt ) {
vec2d newPt;
//pt += vec2d(5.0,5.0);
int x = (int) pt.x % 10;
int X = (int) pt.x / 10;
if ( x >= 5 ) X++;
newPt.x = 10.0 * X;
int y = (int) pt.y % 10;
int Y = (int) pt.y / 10;
if ( y >= 5 ) Y++;
newPt.y = 10.0 * Y;
pt = newPt;
}
/*
*
*/
void Conductor::generateConductorPath2( const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
//diagram() -> _binaryGrid -> add2grid( vec2d(25.0,10.0), vec2d(405.0,45.0) );
if ( diagram() )
if ( diagram()->_binaryGrid)
diagram() -> _binaryGrid -> reBuild(this);
QPointF sp1, sp2, depart;
vec2d newp1, newp2;
vec2d vScenePos = vec2d(scenePos());
Conductor::lastConductor = this;
Conductor::P1 = p1;
Conductor::O1 = o1;
Conductor::P2 = p2;
Conductor::O2 = o2;
//Qet::Orientation ori_depart, ori_arrivee;
qDebug() << "-------------------------------";
if ( diagram() ){
qDebug() <<"Diagram title : "<< diagram() -> title();
}
// s'assure qu'il n'y a ni points
QList<QPointF> points;
vec2ds.clear();
// mappe les points par rapport a la scene
if ( p1.x() < p2.x() ) {
sp1 = mapFromScene(p1);
sp2 = mapFromScene(p2);
}
else {
sp1 = mapFromScene(p2);
sp2 = mapFromScene(p1);
Qet::Orientation o = o1;
o1 = o2;
o2 = o;
}
// prolonge les bornes
Element* element;
Element* element1 = terminal1 -> parentElement();
Element* element2 = terminal2 -> parentElement();
newp1 = vec2d(sp1) + vScenePos;
snapOnGrid( newp1 );
vec2d vDir1 = orientation2vec2d(o1);
element = NULL;
if ( isInsideElement( newp1, element1 ) ) element = element1;
else if ( isInsideElement( newp1, element2 ) ) element = element2;
if ( element ) qDebug() <<"Intersection terminal1 : "<< element -> name();
else qDebug() <<"*** Erreur Intersection terminal1 : ";
newp1 = extendOutOfElement( newp1, vDir1, element );
newp2 = vec2d(sp2) + vScenePos;
snapOnGrid( newp2 );
vec2d vDir2 = orientation2vec2d(o2);
element = NULL;
if ( isInsideElement( newp2, element1 ) ) element = element1;
else if ( isInsideElement( newp2, element2 ) ) element = element2;
newp2 = extendOutOfElement( newp2, vDir2, element );
//--------------------------
currentIndice = 0;
addPoint( vec2d(sp1) + vScenePos );
addPoint( newp1 );
vec2d newPt = newp1;
vec2d vo = orientation2vec2d(o1);
// tout droit petite distance
vec2d P1 = vec2d(sp1);
vec2d P2 = vec2d(sp2);
vec2d vDir = vec2d( P1, P2 );
vec2d vNor = vDir.vnormalize();
// printVec2d( "P1", P1);
// printVec2d( "P2", P2);
// printVec2d( "DI", vDir);
// printVec2d( "NO", vNor);
// printDoubl( "dot1", fabs(vNor.dot(vDir1)) );
// printDoubl( "dot2", fabs(vNor.dot(vDir2)) );
// printDoubl( "leng", vDir.length() );
//if ( vDir != vec2d(0.0,0.0) && ( fabs(vNor.dot(vDir1)) != 1.0 || fabs(vNor.dot(vDir2)) != 1.0 || vDir.length() > 45.0 ) ) {
if ( vDir != vec2d(0.0,0.0) && ( vDir.length() > 45.0 ) ) {
while ( newPt != newp2 ) {
if ( bDebug ) {
qDebug() << "**** Point suivant :"<< currentIndice;
printVec2d( " a partir de newPt : ", newPt );
printVec2d( " vers : ", newp2 );
}
newPt = findNextPoint( newPt, vo, newp2, orientation2vec2d(o2) );
addPoint( newPt );
if( currentIndice>=30 ) break;
}
}
else {
qDebug()<<"Tout droit";
vec2ds.removeAt(1);
}
//vec2ds << newp2;
addPoint( vec2d(sp2) + vScenePos );
if ( bSmooth ) smooth();
// change vec2d to QPointF
int nb = vec2ds.size();
for( int i=0; i<nb; i++ ) {
points << vec2ds[i].toQPointF();
}
pointsToSegments(points);
segmentsToPath();
diagram() -> _binaryGrid -> add2grid(this);
if ( Conductor::bDebugGrid ) diagram() -> _binaryGrid -> debugGrid();
}
void Conductor::reBuild() {
if ( ! lastConductor ) return;
lastConductor -> generateConductorPath2( P1, O1, P2, O2 );
}
void Conductor::smooth(){
int nb = vec2ds.size()-4;
vec2d vNull = vec2d(0.0,0.0);
QList<vec2d> removePoints;
for ( int i=1; i<nb; i++ ) {
int ip0 = i;
int ip1 = i+1;
int ip2 = i+2;
int ip3 = i+3;
int ip4 = i+4;
// qDebug() << "------------------------------";
// qDebug() << "i = "<< i;
vec2d v1 = vec2d( vec2ds[ip0], vec2ds[ip1] );
vec2d v2 = vec2d( vec2ds[ip2], vec2ds[ip3] );
vec2d v3 = vec2d( vec2ds[ip1], vec2ds[ip2] );
vec2d v4 = vec2d( vec2ds[ip3], vec2ds[ip4] );
// printVec2d( "v1 : ", v1 );
// printVec2d( "v2 : ", v2 );
// printVec2d( "v3 : ", v3 );
// printVec2d( "v4 : ", v4 );
if ( (v1 == vNull) || (v2 == vNull) || (v3 == vNull) || (v4 == vNull) ) continue;
v1.normalize();
v2.normalize();
v3.normalize();
v4.normalize();
// printVec2d( "v1 : ", v1 );
// printVec2d( "v2 : ", v2 );
// printVec2d( "v3 : ", v3 );
// printVec2d( "v4 : ", v4 );
if ( v1 == v2 && v3 == v4 ) {
vec2d P1 = vec2d( vec2ds[ip1] ) + vec2d( vec2ds[ip2], vec2ds[ip3] );
// printVec2d( "P0 : ", vec2ds[ip0] );
// printVec2d( "P1 : ", P1 );
// printVec2d( "P4 : ", vec2ds[ip4] );
Element * element1 = intersectionElements( P1, vec2ds[ip1] );
Element * element2 = intersectionElements( P1, vec2ds[ip3] );
if ( element1 == NULL && element2 == NULL ){
// removePoints << vec2d( vec2ds[ip1] );
// removePoints << vec2d( vec2ds[ip2] );
//i += 3;
// qDebug() <<"Remove point : "<< ip1 <<", "<< ip2 <<", "<< ip3;
vec2ds[ip1] = P1;
vec2ds[ip2] = P1;
vec2ds[ip3] = P1;
vec2ds.removeAt(ip1);
vec2ds.removeAt(ip1);
smooth();
break;
}
else {
if ( bDebug ) {
if ( element1 ) qDebug() <<"Intersection 1 avec : "<< element1 -> name();
if ( element2 ) qDebug() <<"Intersection 2 avec : "<< element2 -> name();
}
}
}
}
}
/*
"P0 : " ( 220 , 290 )
"P1 : " ( 220 , 470 )
"P4 : " ( 540 , 470 )
*/
void Conductor::updateConductorPath2(const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
generateConductorPath2( p1, o1, p2, o2);
}
/**
Dessine le conducteur sans antialiasing.
@@ -1278,10 +451,6 @@ void Conductor::paint(QPainter *qp, const QStyleOptionGraphicsItem *options, QWi
// affectation du QPen et de la QBrush modifies au QPainter
qp -> setBrush(conductor_brush);
if ( bMouseOver ) conductor_pen.setWidthF(3.0);
else conductor_pen.setWidthF(1.0);
QPen final_conductor_pen = conductor_pen;
// modification du QPen generique pour lui affecter la couleur et le style adequats
@@ -1346,35 +515,6 @@ void Conductor::paint(QPainter *qp, const QStyleOptionGraphicsItem *options, QWi
qp -> drawEllipse(QRectF(point.x() - pretty_offset, point.y() - pretty_offset, 2.0, 2.0));
}
}
//Dessine tous les points
QFont font = qp -> font() ;
font.setPointSize ( 8 );
//font.setWeight(QFont::DemiBold);
qp -> setFont(font);
if ( Conductor::bAffPoint ) {
int nb = vec2ds.size();
vec2d prevPt = vec2d(0.0,0.0);
double nbPt = 0.0;
for (int i = 0 ; i < nb ; i++) {
vec2d pt = vec2ds[i];
vec2d vtl = vec2d(pt) - vec2d( 2.0, 2.0 ); // topLeft
vec2d vbr = vec2d(pt) + vec2d( 2.0, 2.0 ); // bottomRight
if ( prevPt == pt ) nbPt += 1.0;
else nbPt = 0.0;
// Point
QPointF coordText = vec2d( pt + nbPt * vec2d(10.0,0.0) + vec2d(2.0,-1.0) ).toQPointF();
qp -> fillRect( QRectF( vtl.toQPointF(), vbr.toQPointF() ) , square_brush );
// Texte
QString text = QString::number(i,10) +":"+ QString::number( (int)pt.x ) +", "+ QString::number( (int)pt.y );
qp -> drawText( coordText, text );
prevPt = pt;
}
}
qp -> restore();
}
@@ -1572,9 +712,9 @@ void Conductor::hoverLeaveEvent(QGraphicsSceneHoverEvent *e) {
@param e Le QGraphicsSceneHoverEvent decrivant l'evenement
*/
void Conductor::hoverMoveEvent(QGraphicsSceneHoverEvent *e) {
/*
if (isSelected()) {
QPointF hover_point = mapFromScene(e -> pos()) + scenePos();
QPointF hover_point = mapFromScene(e -> pos());
ConductorSegment *segment = segments;
bool cursor_set = false;
while (segment -> hasNextSegment()) {
@@ -1589,7 +729,7 @@ void Conductor::hoverMoveEvent(QGraphicsSceneHoverEvent *e) {
}
if (!cursor_set) setCursor(Qt::ArrowCursor);
}
*/
QGraphicsPathItem::hoverMoveEvent(e);
}