Revert r3492

git-svn-id: svn+ssh://svn.tuxfamily.org/svnroot/qet/qet/trunk@3493 bfdf4180-ca20-0410-9c96-a3a8aa849046
This commit is contained in:
scorpio810
2014-11-16 20:32:55 +00:00
parent 02df8a5073
commit d544fd3d85
19 changed files with 11 additions and 1744 deletions

View File

@@ -31,7 +31,6 @@
#include "qetgraphicsitem/independenttextitem.h"
#include "qetapp.h"
#include "qetgraphicsitem/diagramimageitem.h"
#include "qetgraphicsitem/conductor.h"
#include "qetgraphicsitem/qetshapeitem.h"
#include "terminal.h"
#include "elementtextsmover.h"
@@ -79,8 +78,6 @@ Diagram::Diagram(QObject *parent) :
&border_and_titleblock, SIGNAL(diagramTitleChanged(const QString &)),
this, SLOT(titleChanged(const QString &))
);
_binaryGrid = new BinaryGrid(this);
}
/**
@@ -108,8 +105,6 @@ Diagram::~Diagram() {
}
qDeleteAll (deletable_items);
delete _binaryGrid;
}
/**
@@ -194,35 +189,6 @@ void Diagram::keyReleaseEvent(QKeyEvent *e) {
bool transmit_event = true;
if (!isReadOnly()) {
// detecte le relachement d'une touche de direction ( = deplacement d'elements)
if ( e -> key() == Qt::Key_C) {
Conductor::bDebugGrid= !Conductor::bDebugGrid;
update();
}
else if ( e -> key() == Qt::Key_P) {
Conductor::bAffPoint = !Conductor::bAffPoint;
update();
}
else if ( e -> key() == Qt::Key_S) {
Conductor::bSmooth = !Conductor::bSmooth;
Conductor::reBuild();
update();
}
else if ( e -> key() == Qt::Key_D) {
Conductor::bDebug = !Conductor::bDebug;
Conductor::reBuild();
update();
}
else if ( e -> key() == Qt::Key_Plus) {
Conductor::iIndiceDebug++;
Conductor::reBuild();
update();
}
else if ( e -> key() == Qt::Key_Minus) {
Conductor::iIndiceDebug--;
Conductor::reBuild();
update();
}
if (
(e -> key() == Qt::Key_Left || e -> key() == Qt::Key_Right ||
e -> key() == Qt::Key_Up || e -> key() == Qt::Key_Down) &&

View File

@@ -27,7 +27,6 @@
#include "numerotationcontext.h"
#include "qetproject.h"
#include "properties/xrefproperties.h"
#include "binarygrid.h"
class Conductor;
class CustomElement;
@@ -44,7 +43,6 @@ class Terminal;
class ConductorTextItem;
class DiagramImageItem;
class ElementTextsMover;
class BinaryGrid;
/**
This class represents an electric diagram. It manages its various child
elements, conductors and texts and handles their graphic rendering.
@@ -226,9 +224,6 @@ class Diagram : public QGraphicsScene {
void editElementRequired(const ElementsLocation &);
void reportPropertiesChanged(QString);
void XRefPropertiesChanged();
public:
BinaryGrid* _binaryGrid;
};
Q_DECLARE_METATYPE(Diagram *)

View File

@@ -447,7 +447,6 @@ void DiagramView::paste(const QPointF &pos, QClipboard::Mode clipboard_mode) {
// objet pour recuperer le contenu ajoute au schema par le coller
DiagramContent content_pasted;
scene -> fromXml(document_xml, pos, false, &content_pasted);
qDebug()<< "PASTE" << texte_presse_papier;
// si quelque chose a effectivement ete ajoute au schema, on cree un objet d'annulation
if (content_pasted.count()) {

View File

@@ -59,7 +59,6 @@ RecentFiles *QETApp::projects_recent_files_ = 0;
RecentFiles *QETApp::elements_recent_files_ = 0;
AboutQET *QETApp::about_dialog_ = 0;
TitleBlockTemplate *QETApp::default_titleblock_template_ = 0;
bool QETApp::bConductor2 = false;
/**
Constructeur

View File

@@ -131,7 +131,6 @@ class QETApp : public QETSingleApplication {
static QList<QETTitleBlockTemplateEditor *> titleBlockTemplateEditors(QETProject *);
static QTextOrientationSpinBoxWidget *createTextOrientationSpinBoxWidget();
static TitleBlockTemplate *defaultTitleBlockTemplate();
static bool bConductor2;
protected:
#ifdef Q_OS_DARWIN

View File

@@ -16,7 +16,6 @@
along with QElectroTech. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qetarguments.h"
#include "qetapp.h"
#include "titleblock/templatescollection.h"
/**
@@ -250,9 +249,6 @@ void QETArguments::handleOptionArgument(const QString &option) {
print_license_ = true;
options_ << option;
return;
} else if (option == QString("--conductor2")) {
QETApp::bConductor2 = true;
return;
}
#ifdef QET_ALLOW_OVERRIDE_CED_OPTION

View File

@@ -1,231 +0,0 @@
/***************************************************************************
* Mathlib
*
* Copyright (C) 2003-2004, Alexander Zaprjagaev <frustum@frustum.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
***************************************************************************
* Update 2004/08/19
*
* added ivec2, ivec3 & ivec4 methods
* vec2d, vec3d & vec4d data : added texture coords (s,t,p,q) and color enums (r,g,b,a)
* mat3d & mat4d : added multiple double constructor ad modified methods returning mat3d or mat4d
* optimisations like "x / 2.0f" replaced by faster "x * 0.5f"
* defines of multiples usefull maths values and radian/degree conversions
* vec2d : added methods : set, reset, compare, dot, closestPointOnLine, closestPointOnSegment,
* projectionOnLine, lerp, angle
* vec3d : added methods : set, reset, compare, dot, cross, closestPointOnLine, closestPointOnSegment,
* projectionOnLine, lerp, angle
* vec4d : added methods : set, reset, compare
***************************************************************************
* Update 2014/08/20
*
* Transform float to double
* for using with QT program
* author : Rene Negre <runsys@qelectotech.org>
***************************************************************************
*/
#ifndef __HMATHLIB_D__
#define __HMATHLIB_D__
#include <math.h>
#include <stdlib.h>
#include <QPointF>
#define EPSILON 0.00000001
//#define M_PI 3.141592653589793238462643383279f // PI
#define M_PIDIV2 1.570796326794896619231321691639f // PI / 2
#define M_2PI 6.283185307179586476925286766559f // 2 * PI
#define M_PI2 9.869604401089358618834490999876f // PI au carre
#define M_PIDIV180 0.01745329251994329576923690768488f // PI / 180
#define M_180DIVPI 57.295779513082320876798154814105f // 180 / PI
#define DegToRadd(a) (a)*=M_PIDIV180
#define RadToDegd(a) (a)*=M_180DIVPI
#define DEG2RADd(a) ((a)*M_PIDIV180)
#define RAD2DEGd(a) ((a)*M_180DIVPI)
#define RADIANSd(a) ((a)*M_PIDIV180)
#define DEGRESd(a) ((a)*M_180DIVPI)
#define DegToRad DEG2RADd
const double INV_RAND_MAX = 1.0 / (RAND_MAX);
const double INV_RAND_MAXd = 1.0 / (RAND_MAX );
inline double randomd(double max=1.0) { return max * rand() * INV_RAND_MAX; }
inline double randomd(double min, double max) { return min + (max - min) * INV_RAND_MAX * rand(); }
inline int randomd(int max=RAND_MAX) { return rand()%(max+1); }
class vec2d;
class ivec2;
/*****************************************************************************/
/* */
/* vec2d */
/* */
/*****************************************************************************/
class vec2d {
public:
static int count;
vec2d(void) : x(0), y(0) { count++; }
vec2d(double _x,double _y) : x(_x), y(_y) { count++; }
vec2d(const double *_v) : x(_v[0]), y(_v[1]) { count++; }
vec2d(const vec2d &_p1, const vec2d & _p2) : x(_p2.x-_p1.x), y(_p2.y-_p1.y) { count++; }
vec2d(const QPointF &_qp) : x(_qp.x()), y(_qp.y()) { count++; }
~vec2d() { count--; }
bool operator==(const vec2d &_v) { return (fabs(this->x - _v.x) < EPSILON && fabs(this->y - _v.y) < EPSILON); }
int operator!=(const vec2d &_v) { return !(*this == _v); }
vec2d &operator=(double _f) { this->x=_f; this->y=_f; return (*this); }
const vec2d operator*(double _f) const { return vec2d(this->x * _f,this->y * _f); }
const vec2d operator/(double _f) const {
if(fabs(_f) < EPSILON) return *this;
_f = 1.0f / _f;
return (*this) * _f;
}
const vec2d operator+(const vec2d &_v) const { return vec2d(this->x + _v.x,this->y + _v.y); }
const vec2d operator-() const { return vec2d(-this->x,-this->y); }
const vec2d operator-(const vec2d &_v) const { return vec2d(this->x - _v.x,this->y - _v.y); }
vec2d &operator*=(double _f) { return *this = *this * _f; }
vec2d &operator/=(double _f) { return *this = *this / _f; }
vec2d &operator+=(const vec2d &_v) { return *this = *this + _v; }
vec2d &operator-=(const vec2d &_v) { return *this = *this - _v; }
double operator*(const vec2d &_v) const { return this->x * _v.x + this->y * _v.y; }
operator double*() { return this->v; }
operator const double*() const { return this->v; }
// double &operator[](int _i) { return this->v[_i]; }
// const double &operator[](int _i) const { return this->v[_i]; }
void set(double _x,double _y) { this->x = _x; this->y = _y; }
void reset(void) { this->x = this->y = 0; }
double length(void) const { return sqrtf(this->x * this->x + this->y * this->y); }
double normalize(void) {
double inv,l = this->length();
if(l < EPSILON) return 0.0f;
inv = 1.0f / l;
this->x *= inv;
this->y *= inv;
return l;
}
double dot(const vec2d &v) { return ((this->x*v.x) + (this->y*v.y)); } // Produit scalaire
bool compare(const vec2d &_v,double epsi=EPSILON) { return (fabs(this->x - _v.x) < epsi && fabs(this->y - _v.y) < epsi); }
// retourne les coordonnée du point le plus proche de *this sur la droite passant par vA et vB
vec2d closestPointOnLine(const vec2d &vA, const vec2d &vB) { return (((vB-vA) * this->projectionOnLine(vA, vB)) + vA); }
// retourne les coordonnée du point le plus proche de *this sur le segment vA,vB
vec2d closestPointOnSegment(const vec2d &vA, const vec2d &vB) {
double factor = this->projectionOnLine(vA, vB);
if (factor <= 0.0f) return vA;
if (factor >= 1.0f) return vB;
return (((vB-vA) * factor) + vA);
}
// retourne le facteur de la projection de *this sur la droite passant par vA et vB
double projectionOnLine(const vec2d &vA, const vec2d &vB) {
vec2d v(vB - vA);
return v.dot(*this - vA) / v.dot(v);
}
// Fonction d'interpolation linéaire entre 2 vecteurs
vec2d lerp(vec2d &u, vec2d &v, double factor) { return ((u * (1 - factor)) + (v * factor)); }
vec2d lerp(vec2d &u, vec2d &v, vec2d& factor) { return (vec2d((u.x * (1 - factor.x)) + (v.x * factor.x), (u.y * (1 - factor.y)) + (v.y * factor.y))); }
double angle(void) { return (double)atan2(this->y,this->x); }
double angle(const vec2d &v) { return (double)atan2(v.y-this->y,v.x-this->x); }
vec2d mul(const vec2d &v) { return vec2d(this->x*=v.x, this->y*=v.y); } // Produit des ccordonnes
vec2d& mulCoord(const vec2d &v) { this->x*=v.x, this->y*=v.y; return *this; } // Produit des ccordonnes
double addCoord() { return this->x + this->y; } // Produit des ccordonnes
vec2d vabs(void) { return vec2d( fabs(this->x), fabs(this->y) ); }
void abs(void) { this->x = fabs(this->x); this->y = fabs(this->y); }
vec2d exch(void) { return vec2d( this->y, this->x ); }
QPointF toQPointF() { return QPointF(this->x, this->y); }
vec2d vnormalize(void) {
double inv,l = this->length();
if(l < EPSILON) return vec2d(0.0,0.0);
inv = 1.0f / l;
return vec2d(this->x * inv, this->y * inv);
}
union {
struct {double x,y;};
struct {double s,t;};
double v[2];
};
};
inline vec2d operator*(double fl, const vec2d& v) { return vec2d(v.x*fl, v.y*fl);}
inline double Dot(const vec2d& a, const vec2d& b) { return(a.x*b.x+a.y*b.y); }
/*****************************************************************************/
/* */
/* ivec2 */
/* */
/*****************************************************************************/
class ivec2 {
public:
ivec2(void) : a(0), b(0) { }
ivec2(long _a,long _b) : a(_a), b(_b) { }
ivec2(const long *iv) : a(iv[0]), b(iv[1]) { }
ivec2(const ivec2 &iv) : a(iv.a), b(iv.b) { }
ivec2(const vec2d &v) : x((int)v.x), y((int)v.y) { }
int operator==(const ivec2 &iv) { return ((this->a == iv.a) && (this->b == iv.b)); }
int operator!=(const ivec2 &iv) { return !(*this == iv); }
ivec2 &operator=(long _i) { this->x=_i; this->y=_i; return (*this); }
const ivec2 operator*(long _i) const { return ivec2(this->a * _i,this->b * _i); }
const ivec2 operator/(long _i) const { return ivec2(this->a / _i,this->b / _i); }
const ivec2 operator+(const ivec2 &iv) const { return ivec2(this->a + iv.a,this->b + iv.b); }
const ivec2 operator-() const { return ivec2(-this->a,-this->b); }
const ivec2 operator-(const ivec2 &iv) const { return ivec2(this->a - iv.a,this->b - iv.b); }
ivec2 &operator*=(long _i) { return *this = *this * _i; }
ivec2 &operator/=(long _i) { return *this = *this / _i; }
ivec2 &operator+=(const ivec2 &iv) { return *this = *this + iv; }
ivec2 &operator-=(const ivec2 &iv) { return *this = *this - iv; }
long operator*(const ivec2 &iv) const { return this->a * iv.a + this->b * iv.b; }
operator long*() { return this->i; }
operator const long*() const { return this->i; }
// long &operator[](int _i) { return this->i[_i]; }
// const long &operator[](int _i) const { return this->i[_i]; }
void set(long _a,long _b) { this->a = _a; this->b = _b; }
void reset(void) { this->a = this->b = 0; }
void swap(ivec2 &iv) { long tmp=a; a=iv.a; iv.a=tmp; tmp=b; b=iv.b; iv.b=tmp; }
void swap(ivec2 *iv) { this->swap(*iv); }
union {
struct {long a,b;};
struct {long x,y;};
long i[2];
};
};
#endif // __HMATHLIB_D__

View File

@@ -1,409 +0,0 @@
/*
* binarygrid.cpp
*
* Created on: 8 nov. 2014
* Author: rene
*/
#include <QtDebug>
#include "element.h"
#include "binarygrid.h"
/*
*
*/
BinaryGrid::BinaryGrid( Diagram* d ) {
diagram = d;
reset();
}
/*
*
*/
BinaryGrid::~BinaryGrid() {
}
/*
*
*/
QString reverse( QString s ) {
QString ret = "";
const int nb = s.count();
for(int i=0; i<nb; i++) {
ret.append(s.at(nb-i-1));
}
return ret;
}
/*
*
*/
void printVec2d( QString str, vec2d v ) {
qDebug() << str <<" ("<< v.x <<","<< v.y <<")";
}
/*
*
*/
void printDoubl( QString str, double d ) {
qDebug() << str <<" "<< d;
}
/*
*
*/
QString getStringLine( U64 * line ) {
QString ret = "";
for ( int i=0; i<1; i++ ) {
U64 mask = 1;
for( int j=0; j<64; j++ ) {
if ( (line[i] & mask) == 0 ) ret += ".";
else ret += "1";
mask <<= 1;
}
}
return ret;
}
void rect2side( vec2d* topLeft, vec2d* bottomRight, QRectF qRectF ) {
*topLeft = vec2d( qRectF.topLeft() );
*bottomRight = vec2d( qRectF.bottomRight() );
}
/*
*
*/
void BinaryGrid::reset() {
for( int i=0; i<400; i++ ) {
for( int j=0; j<5; j++ ) {
bitHrzt [i][j] = 0ULL;
bitVrtc [i][j] = 0ULL;
}
}
}
/*
*
*/
void BinaryGrid::build( Conductor* pExceptConductor) {
if ( diagram ){
QList<Element *> elements = diagram -> elements();
for ( int i=0; i<elements.size(); i++ ) {
Element* element = elements[i];
if ( element -> terminals().size() == 0 ) continue;
vec2d topLeft, bottomRight;
rect2side( &topLeft, &bottomRight, element -> boundingRectTrue() );
add2grid( topLeft, bottomRight, 3 );
QList<Conductor*> conductors = element->conductors();
const int nb = conductors.size();
for( int i=0; i<nb; i++ ) {
if ( conductors[i] == pExceptConductor ) continue;
add2grid( conductors[i] );
}
}
}
}
/*
*
*/
void BinaryGrid::reBuild(Conductor* pExceptConductor) {
reset();
build(pExceptConductor);
}
/*
* bit 0 for x = 0
* bit 1 for x = 10
* bit 2 for x = 20
* ....
*
* Compute mask until haven't point (one more)
* for example x = 100
* mask = 0001 1111 1111
*/
void BinaryGrid::computeFirstMask( double d, U64* mask ) {
int n = (int)(d) /640;
d = fmod(d, 640);
U64 uMask = (U64)(d - 1.0) / 10;
mask[n] = 1ULL << ++uMask;
(U64)(mask[n]--);
// Because at umask = 64 the result is mask[n]=256 why ???? 64bits => 8 bits ???
if ( uMask == 64 ) mask[n] = (U64)-1;
for( int i=0; i<n; i++) mask[i] = (U64)-1;
for( int i=n+1; i<5; i++) mask[i] = (U64)0;
}
/*
*
* Compute mask until haven't point
* for example x = 90
* mask = 0001 1111 1111
*
* result :
* for a horizontal line from 50 to 110
* first mask = 0000 0000 1111 (compute from 50)
* second mask = 0111 1111 1111 (compute from 110)
*
* xor result = 0111 1111 0000
*
*/
void BinaryGrid::computeSecondMask( double d, U64* mask ) {
int n = (int)d /640;
d = fmod(d, 640);
U64 uMask = (U64)(d) / 10;
mask[n] = 1ULL << ++uMask;
(U64)(mask[n]--);
// Because at umask = 64 the result is mask[n]=256 why ???? 64bits => 8 bits ???
if ( uMask == 64 ) mask[n] = (U64)-1;
for( int i=0; i<n; i++) mask[i] = (U64)-1;
for( int i=n+1; i<5; i++) mask[i] = (U64)0;
}
/*
*
*/
int BinaryGrid::computeFirstLine( double d) {
return (int) (((d-1)/10)+1);
}
/*
*
*/
int BinaryGrid::computeLastLine( double d) {
return (int) d/10;
}
/*
*
*/
void BinaryGrid::debugGrid(int deb, int fin) {
for ( int i=deb; i<=fin; i++ ) {
// char * binary0 = getStringLine( bitHrzt[i] ).toStdString();
// qDebug( "line : %02d %s %s", i, getStringLine( bitHrzt[i] ).toStdString(), getStringLine( bitVrtc[i] ).toStdString() );
qDebug() <<"line "<< (i+10) <<" "<< getStringLine( bitHrzt[i] ) <<" "<< getStringLine( bitVrtc[i] );
}
}
/*
*
*/
void BinaryGrid::debugGrid() {
debugGrid(2,45);
}
/*
*
*/
void BinaryGrid::add2grid( vec2d topLeft, vec2d bottomRight, int map ) {
double left = vec2d(topLeft).mul(vec2d(1.0,0.0)).addCoord();
double right = vec2d(bottomRight).mul(vec2d(1.0,0.0)).addCoord();
double top = vec2d(topLeft).mul(vec2d(0.0,1.0)).addCoord();
double bottom = vec2d(bottomRight).mul(vec2d(0.0,1.0)).addCoord();
// mask 0 and mask 1
U64 M0[5];
computeFirstMask( left, M0 );
U64 M1[5];
computeSecondMask( right, M1 );
// mask = mask0 xor mask1
U64 mask[5];
for( int i=0; i<5; i++ ) mask[i] = M0[i] ^ M1[i];
int idx0 = computeFirstLine(top);
int idx1 = computeLastLine(bottom);
for ( int i= idx0; i<idx1+1; i++ ) {
for ( int j=0; j<5; j++ ) {
if ( map & HORI ) bitHrzt[i][j] |= mask[j];
if ( map & VERT ) bitVrtc[i][j] |= mask[j];
}
}
}
/*
*
*/
void BinaryGrid::orderVect( vec2d& v1, vec2d& v2 ) {
if ( v1.x > v2.x || v1.y > v2.y ) {
vec2d v = vec2d( v1 );
v1 = v2;
v2 = v;
}
}
/*
*
*/
void BinaryGrid::add2grid( Conductor* pConductor ) {
QList <vec2d> vec2ds = pConductor -> getVec2ds();
const int nb = vec2ds.size() - 1;
for( int i=0; i<nb; i++ ) {
vec2d v1 = vec2d( vec2ds[i] + vec2d(pConductor->scenePos()) );
vec2d v2 = vec2d( vec2ds[i+1] + vec2d(pConductor->scenePos()) );
orderVect( v1, v2 );
vec2d vDir = vec2d( v1, v2 );
if ( vDir.dot( vec2d(0.0,1.0) ) == 0 ) add2grid( v1, v2, VERT);
else add2grid( v1, v2, HORI );
}
}
/*
*
*/
bool BinaryGrid::testMask( U64* mask, int lineBeg, int lineEnd, int map ) {
for ( int i=lineBeg; i<=lineEnd; i++ ) {
for( int j=0; j<5; j++ ) {
U64 val = 0;
if ( (map & HORI) == HORI ) val = bitHrzt[i][j];
if ( (map & VERT) == VERT ) val = bitVrtc[i][j];
if ( (val|mask[j]) != (val^mask[j]) ) return true;
}
}
return false;
}
/*
*
*/
bool BinaryGrid::test( vec2d p1, vec2d p2 ) {
qDebug() <<"BinaryGrid::test";
orderVect( p1, p2 );
// printVec2d( "p1 : ", p1 );
// printVec2d( "p2 : ", p2 );
double left = vec2d(p1).mul(vec2d(1.0,0.0)).addCoord();
double right = vec2d(p2).mul(vec2d(1.0,0.0)).addCoord();
double top = vec2d(p1).mul(vec2d(0.0,1.0)).addCoord();
double bottom = vec2d(p2).mul(vec2d(0.0,1.0)).addCoord();
int map;
vec2d vDir = vec2d( p1, p2 );
if ( vDir.dot( vec2d(0.0,1.0) ) == 0 ) map = HORI;
else map = VERT;
// compute mask 0 and mask 1
U64 M0[5]; computeFirstMask( left, M0 );
U64 M1[5]; computeSecondMask( right, M1 );
// mask = mask0 xor mask1
U64 mask[5];
for( int i=0; i<5; i++ ) mask[i] = M0[i] ^ M1[i];
int idx0 = computeFirstLine(top);
int idx1 = computeLastLine(bottom);
// qDebug() << "idx 0 : "<< idx0;
// qDebug() << "idx 1 : "<< idx1;
//
// debugGrid( idx0-2, idx1+2);
return testMask( mask, idx0, idx1, map );
}
/*
*
*/
bool BinaryGrid::computeMinSegment( vec2d p1, vec2d p2 ) {
qDebug() <<"BinaryGrid::test";
orderVect( p1, p2 );
// printVec2d( "p1 : ", p1 );
// printVec2d( "p2 : ", p2 );
double left = vec2d(p1).mul(vec2d(1.0,0.0)).addCoord();
double right = vec2d(p2).mul(vec2d(1.0,0.0)).addCoord();
double top = vec2d(p1).mul(vec2d(0.0,1.0)).addCoord();
double bottom = vec2d(p2).mul(vec2d(0.0,1.0)).addCoord();
int map;
vec2d vDir = vec2d( p1, p2 );
if ( vDir.dot( vec2d(0.0,1.0) ) == 0 ) map = HORI;
else map = VERT;
// compute mask 0 and mask 1
U64 M0[5]; computeFirstMask( left, M0 );
U64 M1[5]; computeSecondMask( right, M1 );
// mask = mask0 xor mask1
U64 mask[5];
for( int i=0; i<5; i++ ) mask[i] = M0[i] ^ M1[i];
int idx0 = computeFirstLine(top);
int idx1 = computeLastLine(bottom);
// qDebug() << "idx 0 : "<< idx0;
// qDebug() << "idx 1 : "<< idx1;
//
// debugGrid( idx0-2, idx1+2);
return testMask( mask, idx0, idx1, map );
}

View File

@@ -1,52 +0,0 @@
/*
* binarygrid.h
*
* Created on: 8 nov. 2014
* Author: rene
*/
#ifndef BINARYGRID_H_
#define BINARYGRID_H_
#include "diagram.h"
#include "conductor.h"
#include "Mathlib.h"
typedef unsigned long long U64;
#define HORI 0x01
#define VERT 0x02
class BinaryGrid {
public:
BinaryGrid(Diagram * diagram);
~BinaryGrid();
void reset();
void build(Conductor*);
void reBuild(Conductor*);
void computeFirstMask( double, U64* );
void computeSecondMask( double, U64*);
int computeFirstLine( double );
int computeLastLine( double );
void debugGrid(int, int);
void debugGrid();
void add2grid( vec2d, vec2d, int );
void orderVect( vec2d&, vec2d& );
void add2grid( Conductor* );
bool testMask( U64*, int, int, int );
bool test( vec2d, vec2d );
bool computeMinSegment( vec2d, vec2d );
private:
U64 bitHrzt[400][5];
U64 bitVrtc[400][5];
Diagram* diagram;
};
#endif /* BINARYGRID_H_ */

View File

@@ -27,31 +27,12 @@
#include "terminal.h"
#include "conductorautonumerotation.h"
#include "conductorpropertiesdialog.h"
#include "../qetapp.h"
#include "binarygrid.h"
#define PR(x) qDebug() << #x " = " << x;extend
#define PR(x) qDebug() << #x " = " << x;
bool Conductor::pen_and_brush_initialized = false;
QPen Conductor::conductor_pen = QPen();
QBrush Conductor::conductor_brush = QBrush();
QBrush Conductor::square_brush = QBrush(Qt::darkGreen);
int vec2d::count = 0;
bool Conductor::bAffPoint = true;
bool Conductor::bSmooth = false;
Conductor* Conductor::lastConductor = NULL;
QPointF Conductor::P1;
Qet::Orientation Conductor::O1;
QPointF Conductor::P2;
Qet::Orientation Conductor::O2;
bool Conductor::bDebug = false;
bool Conductor::bDebugGrid = false;
int Conductor::iIndiceDebug = 0;
/**
Constructeur
@param p1 Premiere Borne a laquelle le conducteur est lie
@@ -118,7 +99,6 @@ Conductor::Conductor(Terminal *p1, Terminal* p2, Diagram *parent_diagram) :
this,
SLOT(displayedTextChanged())
);
bMouseOver = false;
}
/**
@@ -191,11 +171,6 @@ void Conductor::updateConductorPath(const QPointF &p1, Qet::Orientation o1, cons
Q_UNUSED(o1);
Q_UNUSED(o2);
if ( QETApp::bConductor2 ) {
//qDebug() << "updateConductorPath2";
generateConductorPath2(p1, o1, p2, o2 );
return;
}
ConductorProfile &conductor_profile = conductor_profiles[currentPathType()];
Q_ASSERT_X(conductor_profile.segmentsCount(QET::Both) > 1, "Conductor::priv_modifieConductor", "pas de points a modifier");
@@ -321,11 +296,6 @@ QHash<ConductorSegmentProfile *, qreal> Conductor::shareOffsetBetweenSegments(
@param o2 Orientation de la borne 2
*/
void Conductor::generateConductorPath(const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
if ( QETApp::bConductor2 ){
//qDebug() << "generateConductorPath2";
generateConductorPath2(p1, o1, p2, o2 );
return;
}
QPointF sp1, sp2, depart, newp1, newp2, arrivee, depart0, arrivee0;
Qet::Orientation ori_depart, ori_arrivee;
@@ -421,477 +391,6 @@ void Conductor::generateConductorPath(const QPointF &p1, Qet::Orientation o1, co
segmentsToPath();
}
void Conductor::addPoint( vec2d p ) {
vec2d vScenePos = vec2d(scenePos());
p -= vScenePos;
qDebug() << "Test Point : "<< currentIndice;
if ( currentIndice > 1 ){
vec2d ori = vec2d( vec2ds[currentIndice-1] );
if ( diagram() ) {
if ( diagram() -> _binaryGrid ->test( ori, p ) )
qDebug()<< "Test droie OK de "<< currentIndice-1 <<" à "<< currentIndice;
else
qDebug()<< "Test droie NOK de "<< currentIndice-1 <<" à "<< currentIndice;
}
}
if ( bDebug ) {
qDebug() << "--------------------------";
qDebug() << " point no : " << currentIndice;
printVec2d( " Ajout de : ", p );
qDebug() << "--------------------------";
}
vec2ds << p;
currentIndice++;
if ( currentIndice == iIndiceDebug ) bDebug = true;
else bDebug = false;
}
void Conductor::printVec2d( QString str, vec2d v ) {
qDebug() << str <<" ("<< v.x <<","<< v.y <<")";
}
void Conductor::printDoubl( QString str, double d ) {
qDebug() << str <<" "<< d;
}
/*
*
*/
vec2d Conductor::orientation2vec2d( Qet::Orientation orientation ) {
switch(orientation) {
case Qet::North: return vec2d( 0.0,-1.0 );
case Qet::East: return vec2d( 1.0, 0.0 );
case Qet::South: return vec2d( 0.0, 1.0 );
case Qet::West: return vec2d(-1.0, 0.0 );
}
return vec2d(0.0,0.0);
}
void Conductor::rect2corner( vec2d* topLeft, vec2d* topRight, vec2d*bottomLeft, vec2d* bottomRight, QRectF qRectF, QPointF pos ) {
*topLeft = vec2d( pos + qRectF.topLeft() ) + vec2d(1.0,1.0);
*topRight = vec2d( pos + qRectF.topRight() ) + vec2d(-1.0,1.0);
*bottomLeft = vec2d( pos + qRectF.bottomLeft() ) + vec2d(1.0,-1.0);
*bottomRight = vec2d( pos + qRectF.bottomRight() ) + vec2d(-1.0,-1.0);
}
void Conductor::rect2side( vec2d* topLeft, vec2d* bottomRight, QRectF qRectF, QPointF pos ) {
*topLeft = vec2d( pos + qRectF.topLeft() );
*bottomRight = vec2d( pos + qRectF.bottomRight() );
}
void Conductor::rect2side( vec2d* topLeft, vec2d* bottomRight, QRectF qRectF ) {
*topLeft = vec2d( qRectF.topLeft() );
*bottomRight = vec2d( qRectF.bottomRight() );
}
int Conductor::sign( double d ) { return d==0.0 ? 0 : d<-EPSILON ? -1: 1;}
int Conductor::computeSign( vec2d p1, vec2d p2, vec2d vDir ) {
vec2d c_p1 = vec2d( p1 ).mulCoord( vDir );
vec2d c_p2 = vec2d( p2 ).mulCoord( vDir );
// qDebug() << " computeSign()";
// printVec2d( " p1 : ", c_p1 );
// printVec2d( " p2 : ", c_p2 );
int ret = sign( vec2d( c_p1, c_p2 ).addCoord() );
// printDoubl( " Sign : ", ret );
return ret;
}
bool Conductor::isInsideRect( vec2d pt, vec2d topLeft, vec2d bottomRight ) {
int s_ol = computeSign( pt, topLeft , east );
int s_or = computeSign( pt, bottomRight , east );
if ( s_ol == s_or ) return false;
s_ol = computeSign( pt, topLeft , south );
s_or = computeSign( pt, bottomRight , south );
if ( s_ol == s_or ) return false;
return true;
}
bool Conductor::isInsideRect( vec2d orig, vec2d dest, vec2d topLeft, vec2d bottomRight ) {
int s_ol = computeSign( orig, topLeft , east );
int s_or = computeSign( orig, bottomRight , east );
int s_dl = computeSign( dest, topLeft , east );
int s_dr = computeSign( dest, bottomRight , east );
if ( s_ol == s_or && s_ol == s_dl && s_ol == s_dr ) {
return false;
}
s_ol = computeSign( orig, topLeft , south );
s_or = computeSign( orig, bottomRight , south );
s_dl = computeSign( dest, topLeft , south );
s_dr = computeSign( dest, bottomRight , south );
if ( s_ol == s_or && s_ol == s_dl && s_ol == s_dr ) {
return false;
}
return true;
}
void Conductor::computeIntersection( vec2d orig, vec2d& dest, vec2d topLeft, vec2d bottomRight ) {
vec2d orientation;
vec2d vDir = vec2d( orig, dest ).vnormalize();
double sign = vDir.addCoord();
if ( vDir.dot(south) == 0.0 ) orientation = east;
else orientation = south;
if ( bDebug ) {
printVec2d( " orig : ", orig );
printVec2d( " dest : ", orig );
printVec2d( " dir : ", orientation);
}
vec2d vOL = vec2d( orig, topLeft ).mul(orientation);
vec2d vOR = vec2d( orig, bottomRight).mul(orientation);
double dOL = vOL.addCoord() * sign;
double dOR = vOR.addCoord() * sign;
if ( bDebug ) {
printDoubl( " dOL : ", dOL );
printDoubl( " dOR : ", dOR );
}
double res;
if ( dOL < dOR ) {
res = dOL;
res -= 10.0;
}
else {
res = dOR;
res += 10.0;
}
dest = orig + res * vDir;
snapOnGrid(dest);
if ( bDebug ) {
printVec2d( " dest : ", dest);
}
}
bool Conductor::isInsideElement( vec2d pt, Element* element) {
vec2d topLeft, bottomRight;
rect2side( &topLeft, &bottomRight, element -> boundingRectTrue() );
return isInsideRect( pt, topLeft, bottomRight );
}
Element* Conductor::intersectionElement( vec2d &pt, vec2d ori, Element* element ) {
if ( element == NULL ) return NULL;
vec2d topLeft, bottomRight;
rect2side( &topLeft, &bottomRight, element -> boundingRectTrue() );
if ( bDebug ) {
qDebug() << " test intersection avec : "<< element -> name();
printVec2d( " topLeft : ", topLeft );
printVec2d( " bottomRgiht : ", bottomRight );
}
if ( isInsideRect( ori, pt, topLeft, bottomRight ) ) {
if ( bDebug ) {
qDebug() <<" *** Intersection ";
qDebug() <<" *** computeInstersection";
}
computeIntersection( ori, pt, topLeft, bottomRight );
return element;
}
else {
if ( bDebug ) {
qDebug() <<" Pas d'intersection ";
//intersection( pt, ori, topLeft, bottomRight );
}
}
return NULL;
}
Element* Conductor::intersectionElements( vec2d &pt, vec2d ori ) {
Element* returnElement = NULL;
if ( bDebug ) {
qDebug() << "Intersection Elements";
}
if ( diagram() ){
QList<Element *> elements = diagram() -> elements();
for ( int i=0; i<elements.size(); i++ ) {
Element* element = elements[i];
//if ( element -> terminals() != null ) continue;
if ( element -> terminals().size() == 0 ) continue;
Element* ret = intersectionElement( pt, ori, element );
if ( ret ) returnElement = ret;
}
}
return returnElement;
}
void Conductor::intersectionConductors( vec2d &pt, vec2d ori ) {
if ( bDebug ) {
qDebug() << "Intersection Conductor";
}
if ( diagram() ){
QList<Element *> elements = diagram() -> elements();
int nbElem = elements.size();
for ( int i=0; i<nbElem; i++ ) {
Element* element = elements[i];
QList<Terminal *> terminals = element -> terminals();
int nbTerm = terminals.size();
for( int j=0; j<nbTerm; j++ ) {
Terminal * terminal = terminals[j];
QList<Conductor *> conductors = terminal -> conductors();
int nbCond = conductors.size();
for( int k=0; k<nbCond; k++ ) {
Conductor* conductor = conductors[k];
QList<vec2d> vec2ds = conductor -> vec2ds;
int nbVec2d= vec2ds.size() - 1 ;
vec2d vDir = vec2d(ori, pt).vnormalize();
//return;
for( int l=0; l<nbVec2d; l++ ) {
vec2d topLeft = vec2ds[l];
vec2d bottomRight = vec2ds[l+1];
vec2d vDirConductor = vec2d(topLeft, bottomRight).vnormalize();
if ( vDirConductor.dot(east) < 0.0 || vDirConductor.dot(south) <0.0 ) {
bottomRight = vec2ds[l];
topLeft = vec2ds[l+1];
}
topLeft -= vec2d( 2.0, 2.0 );
bottomRight += vec2d( 2.0, 2.0 );
/*
vec2d oldPt = vec2d(pt);
while( ori != pt ) {
isInsideRect(ori, pt, topLeft, bottomRight);
//pt = ori + 10.0 * vDir;
pt -= 10.0 * vDir;
qDebug() <<" pt dans conducteur Changement... idx : "<< currentIndice << " "<< pt.addCoord();
}
*/
}
}
}
}
}
bDebug = false;
}
void Conductor::evaluatePath( vec2d ori, vec2d& pt, Element * element, double test ) {
if ( element == NULL ) return;
vec2d vDir = vec2d(ori, pt).vnormalize();
vec2d vOrtho = vec2d(vDir).exch();
if ( vDir == vec2d(0.0,0.0) ) return;
if ( bDebug ) {
qDebug() << "EvaluatePath : "<< test <<" sign "<< sign(vDir.addCoord());
}
if ( fabs(test) > 400.0 ) return;
vOrtho = vOrtho.vabs();
vec2d o = pt + test * vOrtho;
vec2d p = o + 50.0 * vDir;
if ( bDebug ) {
printDoubl( " evaluate t : ", test );
printVec2d( " evaluate p : ", p );
printVec2d( " evaluate o : ", o );
}
intersectionElement( p, o, element );
if ( bDebug ) {
printVec2d( " evaluate p : ", p );
printVec2d( " evaluate o : ", o );
}
test += sign(test) * 10.0;
if ( p == o )
evaluatePath( ori, pt, element, test );
else
pt = o;
}
double Conductor::computeSensEvaluatePath( vec2d ori, vec2d pt, vec2d dest ) {
vec2d vDir = vec2d( ori, dest );
vec2d vNew = vec2d( ori, pt ).exch().vabs();
vDir = vDir.mul(vNew);
double ret = vDir.addCoord();
ret = ret >= 0.0 ? 1.0 : -1.0;
return ret;
}
vec2d Conductor::previousDir() {
if ( currentIndice > 2 ) {
vec2d p2 = vec2ds[currentIndice - 1];
vec2d p1 = vec2ds[currentIndice - 2];
vec2d vDir = vec2d( p1, p2 ).vnormalize();
return vDir;
}
return vec2d(0.0,0.0);
}
vec2d Conductor::findNextPoint( vec2d p1, vec2d& vD1, vec2d p2, vec2d vD2 ) {
vec2d vP1P2n = vec2d(p1, p2).vnormalize();
double dot = vD1.dot(vD2);
double coef = 1.0;
vec2d v = vec2d( p1, p2 );
vec2d vnorm = v.vnormalize();
// if direction are opposite the next point is in the middle
// and not in the same line
if ( dot < -0.9 && vnorm.dot(vD1) != 1.0) { coef = 0.5; }
// tout droit
if ( vP1P2n == vD1 ) {
/*
vec2d newPoint = vec2d( p2 );
Element* element = intersectionElements( newPoint, p1 );
if ( element == NULL ) {
addPoint( p2 );
return p2;
}
*/
coef = 1.0;
}
// New point follow first direction horizontal or vertical
v.x *= coef * fabs(vD1.x);
v.y *= coef * fabs(vD1.y);
vec2d newPoint = p1 + v;
// snap on grid
snapOnGrid( newPoint );
vec2d svgPt = newPoint;
//intersectionConductors( newPoint, p1 );
Element* element = intersectionElements( newPoint, p1 );
if ( newPoint != svgPt ) {
//vec2d newDir;
vec2d svgEvalPt = newPoint;
// compute sens
double first = computeSensEvaluatePath( p1, newPoint, p2) * 10.0;
evaluatePath( p1, newPoint, element, first );
if ( svgEvalPt != newPoint ) {
addPoint( svgEvalPt );
// on conserve la direction
return newPoint;
}
}
else {
if ( vP1P2n == vD1 && newPoint == p2 )
return p2;
}
// compute new direction
vec2d newD1 = vec2d( newPoint, p2 );
newD1.mul(vD1.exch().vabs());
newD1.normalize();
if ( newD1 == vec2d(0.0,0.0) ) {
newD1 = vD1.exch();
addPoint( newPoint );
newPoint += 60.0 * newD1;
newD1 = vD1;
}
// normalize vector 1 unit lenght
newD1.normalize();
//Change vD1 (it's a reference) isn't it
vD1.x = newD1.x;
vD1.y = newD1.y;
// printVec2d(" New dir : ", vD1);
// printVec2d("New point : ", newPoint);
// printVec2d("New point : ", newPoint);
return newPoint;
}
/**
Prolonge une borne.
@param terminal Le point correspondant a la borne
@@ -914,336 +413,10 @@ QPointF Conductor::extendTerminal(const QPointF &terminal, Qet::Orientation term
case Qet::West:
extended_terminal = QPointF(terminal.x() - ext_size, terminal.y());
break;
default: extended_terminal = terminal; break;
default: extended_terminal = terminal;
}
return(extended_terminal);
}
vec2d Conductor::extendOutOfElement( vec2d pt, vec2d vDir, Element* element) {
vec2d newPt = pt;
if ( element ) {
while( isInsideElement( newPt , element )) {
newPt += 10.0 * vDir;
}
}
return newPt;
}
void Conductor::snapOnGrid( vec2d& pt ) {
vec2d newPt;
//pt += vec2d(5.0,5.0);
int x = (int) pt.x % 10;
int X = (int) pt.x / 10;
if ( x >= 5 ) X++;
newPt.x = 10.0 * X;
int y = (int) pt.y % 10;
int Y = (int) pt.y / 10;
if ( y >= 5 ) Y++;
newPt.y = 10.0 * Y;
pt = newPt;
}
/*
*
*/
void Conductor::generateConductorPath2( const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
//diagram() -> _binaryGrid -> add2grid( vec2d(25.0,10.0), vec2d(405.0,45.0) );
if ( diagram() )
if ( diagram()->_binaryGrid)
diagram() -> _binaryGrid -> reBuild(this);
QPointF sp1, sp2, depart;
vec2d newp1, newp2;
vec2d vScenePos = vec2d(scenePos());
Conductor::lastConductor = this;
Conductor::P1 = p1;
Conductor::O1 = o1;
Conductor::P2 = p2;
Conductor::O2 = o2;
//Qet::Orientation ori_depart, ori_arrivee;
qDebug() << "-------------------------------";
if ( diagram() ){
qDebug() <<"Diagram title : "<< diagram() -> title();
}
// s'assure qu'il n'y a ni points
QList<QPointF> points;
vec2ds.clear();
// mappe les points par rapport a la scene
if ( p1.x() < p2.x() ) {
sp1 = mapFromScene(p1);
sp2 = mapFromScene(p2);
}
else {
sp1 = mapFromScene(p2);
sp2 = mapFromScene(p1);
Qet::Orientation o = o1;
o1 = o2;
o2 = o;
}
// prolonge les bornes
Element* element;
Element* element1 = terminal1 -> parentElement();
Element* element2 = terminal2 -> parentElement();
newp1 = vec2d(sp1) + vScenePos;
snapOnGrid( newp1 );
vec2d vDir1 = orientation2vec2d(o1);
element = NULL;
if ( isInsideElement( newp1, element1 ) ) element = element1;
else if ( isInsideElement( newp1, element2 ) ) element = element2;
if ( element ) qDebug() <<"Intersection terminal1 : "<< element -> name();
else qDebug() <<"*** Erreur Intersection terminal1 : ";
newp1 = extendOutOfElement( newp1, vDir1, element );
newp2 = vec2d(sp2) + vScenePos;
snapOnGrid( newp2 );
vec2d vDir2 = orientation2vec2d(o2);
element = NULL;
if ( isInsideElement( newp2, element1 ) ) element = element1;
else if ( isInsideElement( newp2, element2 ) ) element = element2;
newp2 = extendOutOfElement( newp2, vDir2, element );
//--------------------------
currentIndice = 0;
addPoint( vec2d(sp1) + vScenePos );
addPoint( newp1 );
vec2d newPt = newp1;
vec2d vo = orientation2vec2d(o1);
// tout droit petite distance
vec2d P1 = vec2d(sp1);
vec2d P2 = vec2d(sp2);
vec2d vDir = vec2d( P1, P2 );
vec2d vNor = vDir.vnormalize();
// printVec2d( "P1", P1);
// printVec2d( "P2", P2);
// printVec2d( "DI", vDir);
// printVec2d( "NO", vNor);
// printDoubl( "dot1", fabs(vNor.dot(vDir1)) );
// printDoubl( "dot2", fabs(vNor.dot(vDir2)) );
// printDoubl( "leng", vDir.length() );
//if ( vDir != vec2d(0.0,0.0) && ( fabs(vNor.dot(vDir1)) != 1.0 || fabs(vNor.dot(vDir2)) != 1.0 || vDir.length() > 45.0 ) ) {
if ( vDir != vec2d(0.0,0.0) && ( vDir.length() > 45.0 ) ) {
while ( newPt != newp2 ) {
if ( bDebug ) {
qDebug() << "**** Point suivant :"<< currentIndice;
printVec2d( " a partir de newPt : ", newPt );
printVec2d( " vers : ", newp2 );
}
newPt = findNextPoint( newPt, vo, newp2, orientation2vec2d(o2) );
addPoint( newPt );
if( currentIndice>=30 ) break;
}
}
else {
qDebug()<<"Tout droit";
vec2ds.removeAt(1);
}
//vec2ds << newp2;
addPoint( vec2d(sp2) + vScenePos );
if ( bSmooth ) smooth();
// change vec2d to QPointF
int nb = vec2ds.size();
for( int i=0; i<nb; i++ ) {
points << vec2ds[i].toQPointF();
}
pointsToSegments(points);
segmentsToPath();
diagram() -> _binaryGrid -> add2grid(this);
if ( Conductor::bDebugGrid ) diagram() -> _binaryGrid -> debugGrid();
}
void Conductor::reBuild() {
if ( ! lastConductor ) return;
lastConductor -> generateConductorPath2( P1, O1, P2, O2 );
}
void Conductor::smooth(){
int nb = vec2ds.size()-4;
vec2d vNull = vec2d(0.0,0.0);
QList<vec2d> removePoints;
for ( int i=1; i<nb; i++ ) {
int ip0 = i;
int ip1 = i+1;
int ip2 = i+2;
int ip3 = i+3;
int ip4 = i+4;
// qDebug() << "------------------------------";
// qDebug() << "i = "<< i;
vec2d v1 = vec2d( vec2ds[ip0], vec2ds[ip1] );
vec2d v2 = vec2d( vec2ds[ip2], vec2ds[ip3] );
vec2d v3 = vec2d( vec2ds[ip1], vec2ds[ip2] );
vec2d v4 = vec2d( vec2ds[ip3], vec2ds[ip4] );
// printVec2d( "v1 : ", v1 );
// printVec2d( "v2 : ", v2 );
// printVec2d( "v3 : ", v3 );
// printVec2d( "v4 : ", v4 );
if ( (v1 == vNull) || (v2 == vNull) || (v3 == vNull) || (v4 == vNull) ) continue;
v1.normalize();
v2.normalize();
v3.normalize();
v4.normalize();
// printVec2d( "v1 : ", v1 );
// printVec2d( "v2 : ", v2 );
// printVec2d( "v3 : ", v3 );
// printVec2d( "v4 : ", v4 );
if ( v1 == v2 && v3 == v4 ) {
vec2d P1 = vec2d( vec2ds[ip1] ) + vec2d( vec2ds[ip2], vec2ds[ip3] );
// printVec2d( "P0 : ", vec2ds[ip0] );
// printVec2d( "P1 : ", P1 );
// printVec2d( "P4 : ", vec2ds[ip4] );
Element * element1 = intersectionElements( P1, vec2ds[ip1] );
Element * element2 = intersectionElements( P1, vec2ds[ip3] );
if ( element1 == NULL && element2 == NULL ){
// removePoints << vec2d( vec2ds[ip1] );
// removePoints << vec2d( vec2ds[ip2] );
//i += 3;
// qDebug() <<"Remove point : "<< ip1 <<", "<< ip2 <<", "<< ip3;
vec2ds[ip1] = P1;
vec2ds[ip2] = P1;
vec2ds[ip3] = P1;
vec2ds.removeAt(ip1);
vec2ds.removeAt(ip1);
smooth();
break;
}
else {
if ( bDebug ) {
if ( element1 ) qDebug() <<"Intersection 1 avec : "<< element1 -> name();
if ( element2 ) qDebug() <<"Intersection 2 avec : "<< element2 -> name();
}
}
}
}
}
/*
"P0 : " ( 220 , 290 )
"P1 : " ( 220 , 470 )
"P4 : " ( 540 , 470 )
*/
void Conductor::updateConductorPath2(const QPointF &p1, Qet::Orientation o1, const QPointF &p2, Qet::Orientation o2) {
generateConductorPath2( p1, o1, p2, o2);
}
/**
Dessine le conducteur sans antialiasing.
@@ -1278,10 +451,6 @@ void Conductor::paint(QPainter *qp, const QStyleOptionGraphicsItem *options, QWi
// affectation du QPen et de la QBrush modifies au QPainter
qp -> setBrush(conductor_brush);
if ( bMouseOver ) conductor_pen.setWidthF(3.0);
else conductor_pen.setWidthF(1.0);
QPen final_conductor_pen = conductor_pen;
// modification du QPen generique pour lui affecter la couleur et le style adequats
@@ -1346,35 +515,6 @@ void Conductor::paint(QPainter *qp, const QStyleOptionGraphicsItem *options, QWi
qp -> drawEllipse(QRectF(point.x() - pretty_offset, point.y() - pretty_offset, 2.0, 2.0));
}
}
//Dessine tous les points
QFont font = qp -> font() ;
font.setPointSize ( 8 );
//font.setWeight(QFont::DemiBold);
qp -> setFont(font);
if ( Conductor::bAffPoint ) {
int nb = vec2ds.size();
vec2d prevPt = vec2d(0.0,0.0);
double nbPt = 0.0;
for (int i = 0 ; i < nb ; i++) {
vec2d pt = vec2ds[i];
vec2d vtl = vec2d(pt) - vec2d( 2.0, 2.0 ); // topLeft
vec2d vbr = vec2d(pt) + vec2d( 2.0, 2.0 ); // bottomRight
if ( prevPt == pt ) nbPt += 1.0;
else nbPt = 0.0;
// Point
QPointF coordText = vec2d( pt + nbPt * vec2d(10.0,0.0) + vec2d(2.0,-1.0) ).toQPointF();
qp -> fillRect( QRectF( vtl.toQPointF(), vbr.toQPointF() ) , square_brush );
// Texte
QString text = QString::number(i,10) +":"+ QString::number( (int)pt.x ) +", "+ QString::number( (int)pt.y );
qp -> drawText( coordText, text );
prevPt = pt;
}
}
qp -> restore();
}
@@ -1572,9 +712,9 @@ void Conductor::hoverLeaveEvent(QGraphicsSceneHoverEvent *e) {
@param e Le QGraphicsSceneHoverEvent decrivant l'evenement
*/
void Conductor::hoverMoveEvent(QGraphicsSceneHoverEvent *e) {
/*
if (isSelected()) {
QPointF hover_point = mapFromScene(e -> pos()) + scenePos();
QPointF hover_point = mapFromScene(e -> pos());
ConductorSegment *segment = segments;
bool cursor_set = false;
while (segment -> hasNextSegment()) {
@@ -1589,7 +729,7 @@ void Conductor::hoverMoveEvent(QGraphicsSceneHoverEvent *e) {
}
if (!cursor_set) setCursor(Qt::ArrowCursor);
}
*/
QGraphicsPathItem::hoverMoveEvent(e);
}

View File

@@ -19,7 +19,6 @@
#define CONDUCTOR_H
#include "conductorproperties.h"
#include "Mathlib.h"
class ConductorProfile;
class ConductorSegmentProfile;
@@ -172,35 +171,6 @@ class Conductor : public QObject, public QGraphicsPathItem {
void saveProfile(bool = true);
void generateConductorPath(const QPointF &, Qet::Orientation, const QPointF &, Qet::Orientation);
void updateConductorPath(const QPointF &, Qet::Orientation, const QPointF &, Qet::Orientation);
void addPoint(vec2d);
void printVec2d( QString, vec2d );
void printDoubl( QString, double );
vec2d qPointF2vec2d( QPointF );
QPointF vec2d2qPointF( vec2d );
vec2d orientation2vec2d( Qet::Orientation );
void rect2side( vec2d*, vec2d*, QRectF, QPointF );
void rect2side( vec2d*, vec2d*, QRectF );
void rect2corner( vec2d*, vec2d*, vec2d*, vec2d*, QRectF, QPointF );
int sign( double );
int computeSign( vec2d, vec2d, vec2d );
bool isInsideRect( vec2d, vec2d, vec2d );
bool isInsideRect( vec2d, vec2d, vec2d, vec2d );
void computeIntersection( vec2d, vec2d&, vec2d, vec2d );
bool isInsideElement( vec2d, Element* );
Element* intersectionElement( vec2d&, vec2d, Element* );
Element* intersectionElements( vec2d&, vec2d );
void intersectionConductors( vec2d&, vec2d );
void evaluatePath( vec2d, vec2d&, Element*, double = 10.0 );
double computeSensEvaluatePath( vec2d, vec2d, vec2d );
vec2d previousDir();
vec2d findNextPoint( vec2d, vec2d&, vec2d, vec2d );
vec2d extendOutOfElement( vec2d, vec2d, Element* );
void snapOnGrid( vec2d& );
void generateConductorPath2(const QPointF &, Qet::Orientation, const QPointF &, Qet::Orientation);
void smooth( void );
void updateConductorPath2(const QPointF &, Qet::Orientation, const QPointF &, Qet::Orientation);
uint segmentsCount(QET::ConductorSegmentType = QET::Both) const;
QList<QPointF> segmentsToPoints() const;
QList<ConductorBend> bends() const;
@@ -217,29 +187,6 @@ class Conductor : public QObject, public QGraphicsPathItem {
static qreal conductor_bound(qreal, qreal, bool);
static Qt::Corner movementType(const QPointF &, const QPointF &);
static QPointF movePointIntoPolygon(const QPointF &, const QPainterPath &);
QList <vec2d> vec2ds;
vec2d north = vec2d( 0.0,-1.0);
vec2d south = vec2d( 0.0, 1.0);
vec2d east = vec2d( 1.0, 0.0);
vec2d west = vec2d(-1.0, 0.0);
int currentIndice;
// Element elementParent1;
// Element elementParent2;
public:
static bool bAffPoint;
static bool bSmooth;
static bool bDebug;
static bool bDebugGrid;
static int iIndiceDebug;
static Conductor* lastConductor;
static QPointF P1;
static Qet::Orientation O1;
static QPointF P2;
static Qet::Orientation O2;
static void reBuild(void);
inline QList<vec2d> getVec2ds() { return vec2ds; }
};
Conductor * longuestConductorInPotential (Conductor *conductor, bool all_diagram = false);

View File

@@ -68,8 +68,5 @@ class ConductorTextItem : public DiagramTextItem {
bool moved_by_user_;
bool rotate_by_user_;
QPointF before_mov_pos_;
};
#endif

View File

@@ -73,7 +73,6 @@ void DiagramTextItem::build() {
setFlag(QGraphicsItem::ItemSendsGeometryChanges, true);
#endif
connect(this, SIGNAL(lostFocus()), this, SLOT(setNonFocusable()));
setAcceptHoverEvents(true);
}
/**
@@ -214,8 +213,7 @@ void DiagramTextItem::setFontSize(int &s) {
@param widget Le QWidget sur lequel on dessine
*/
void DiagramTextItem::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget) {
painter -> setRenderHint(QPainter::Antialiasing, true);
//option->
painter -> setRenderHint(QPainter::Antialiasing, false);
QGraphicsTextItem::paint(painter, option, widget);
if ( bMouseOver ) {
@@ -234,6 +232,7 @@ void DiagramTextItem::paint(QPainter *painter, const QStyleOptionGraphicsItem *o
painter -> drawRoundRect(boundingRect().adjusted(0, 0, 0, 0), 10, 10);
painter -> restore();
}
}
/**

View File

@@ -101,6 +101,5 @@ class DiagramTextItem : public QGraphicsTextItem {
bool no_editable;
bool m_first_move;
QPointF m_mouse_to_origin_movement;
};
#endif

View File

@@ -100,7 +100,6 @@ void Element::paint(QPainter *painter, const QStyleOptionGraphicsItem *options,
}
}
#endif
if (must_highlight_) drawHighlight(painter, options);
// Dessin de l'element lui-meme
@@ -116,18 +115,9 @@ void Element::paint(QPainter *painter, const QStyleOptionGraphicsItem *options,
@return Le rectangle delimitant le contour de l'element
*/
QRectF Element::boundingRect() const {
// qDebug() << QRectF(QPointF(-hotspot_coord.x(), -hotspot_coord.y()), dimensions);
// qDebug() << "orientation : " << orientation();
return(QRectF(QPointF(-hotspot_coord.x(), -hotspot_coord.y()), dimensions));
}
/**
@return Le rectangle delimitant le contour de l'element
*/
QRectF Element::boundingRectTrue() const {
return mapRectToScene( boundingRect() );
}
/**
Definit la taille de l'element sur le schema. Les tailles doivent etre
des multiples de 10 ; si ce n'est pas le cas, les dimensions indiquees
@@ -205,7 +195,6 @@ QPixmap Element::pixmap() {
* @param angle
*/
void Element::rotateBy(const qreal &angle) {
qDebug() << "Rotation : " << angle;
qreal applied_angle = QET::correctAngle(angle);
applyRotation(applied_angle + rotation());
@@ -274,8 +263,7 @@ void Element::drawSelection(QPainter *painter, const QStyleOptionGraphicsItem *o
t.setStyle(Qt::DashDotLine);
painter -> setPen(t);
// Le dessin se fait a partir du rectangle delimitant
//painter -> drawRoundRect(boundingRect().adjusted(1, 1, -1, -1), 10, 10);
painter -> drawRoundRect(boundingRect().adjusted(0, 0, 0, 0), 10, 10);
painter -> drawRoundRect(boundingRect().adjusted(1, 1, -1, -1), 10, 10);
painter -> restore();
}
@@ -301,8 +289,7 @@ void Element::drawHighlight(QPainter *painter, const QStyleOptionGraphicsItem *o
painter -> setPen(Qt::NoPen);
painter -> setBrush(brush);
// Le dessin se fait a partir du rectangle delimitant
//painter -> drawRoundRect(boundingRect().adjusted(1, 1, -1, -1), 10, 10);
painter -> drawRoundRect(boundingRect().adjusted(0, 0, 0, 0), 10, 10);
painter -> drawRoundRect(boundingRect().adjusted(1, 1, -1, -1), 10, 10);
painter -> restore();
}

View File

@@ -150,7 +150,6 @@ class Element : public QetGraphicsItem {
virtual void setHighlighted(bool);
void paint(QPainter *, const QStyleOptionGraphicsItem *, QWidget *);
QRectF boundingRect() const;
QRectF boundingRectTrue() const;
QSize setSize(int, int);
QSize size() const;
QPixmap pixmap();
@@ -182,7 +181,6 @@ class Element : public QetGraphicsItem {
void drawAxes(QPainter *, const QStyleOptionGraphicsItem *);
private:
bool bMouseHover;
bool internal_connections_;
bool must_highlight_;
void drawSelection(QPainter *, const QStyleOptionGraphicsItem *);

View File

@@ -405,8 +405,7 @@ void Terminal::mouseReleaseEvent(QGraphicsSceneMouseEvent *e) {
// on s'arrete la s'il n'est pas possible de relier les bornes
if (!canBeLinkedTo(other_terminal)) return;
// autrement, on pose un conducteur
//Conductor *new_conductor = new Conductor(this, other_terminal);
Conductor *new_conductor = new Conductor(this, other_terminal, d);
Conductor *new_conductor = new Conductor(this, other_terminal);
new_conductor -> setProperties(d -> defaultConductorProperties);
d -> undoStack().push(new AddItemCommand<Conductor *>(new_conductor, d));
new_conductor -> autoText();

View File

@@ -1,28 +0,0 @@
/*
* waypoint.cpp
*
* Created on: 6 nov. 2014
* Author: rene
*/
#include "waypoint.h"
Waypoint::Waypoint( vec2d o, vec2d d) {
orig = o;
dest = d;
vDir = vec2d( orig, dest );
vNor = vDir.vnormalize();
nexttLeft = NULL;
nexttRight = NULL;
}

View File

@@ -1,33 +0,0 @@
/*
* waypoint.h
*
* Created on: 6 nov. 2014
* Author: rene
*/
#ifndef WAYPOINT_H_
#define WAYPOINT_H_
#include "Mathlib.h"
class Waypoint;
class Waypoint {
public:
Waypoint(vec2d, vec2d);
~Waypoint();
private:
vec2d next;
vec2d orig;
vec2d dest;
vec2d vDir;
vec2d vNor;
Waypoint* nexttLeft;
Waypoint* nexttRight;
};
#endif /* WAYPOINT_H_ */